Exercise 2

Use the Laplace transform method to solve the Volterra integral equations of the first kind:

$$
e^{x}+\sin x-\cos x=\int_{0}^{x} 2 e^{x-t} u(t) d t
$$

Solution

The Laplace transform of a function $f(x)$ is defined as

$$
\mathcal{L}\{f(x)\}=F(s)=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

According to the convolution theorem, the product of two Laplace transforms can be expressed as a transformed convolution integral.

$$
F(s) G(s)=\mathcal{L}\left\{\int_{0}^{x} f(x-t) g(t) d t\right\}
$$

Take the Laplace transform of both sides of the integral equation.

$$
\mathcal{L}\left\{e^{x}+\sin x-\cos x\right\}=\mathcal{L}\left\{\int_{0}^{x} 2 e^{x-t} u(t) d t\right\}
$$

Use the fact that the Laplace transform is linear on the left side and apply the convolution theorem on the right side.

$$
\begin{gathered}
\mathcal{L}\left\{e^{x}\right\}+\mathcal{L}\{\sin x\}-\mathcal{L}\{\cos x\}=\mathcal{L}\left\{2 e^{x}\right\} U(s) \\
\frac{1}{s-1}+\frac{1}{s^{2}+1}-\frac{s}{s^{2}+1}=\frac{2}{s-1} U(s)
\end{gathered}
$$

Solve for $U(s)$.

$$
\begin{aligned}
\frac{2}{s-1} U(s) & =\frac{1}{s-1}-\frac{s-1}{s^{2}+1} \\
2 U(s) & =1-\frac{(s-1)^{2}}{s^{2}+1} \\
& =1-\frac{s^{2}-2 s+1}{s^{2}+1} \\
& =\frac{2 s}{s^{2}+1}
\end{aligned}
$$

So then

$$
U(s)=\frac{s}{s^{2}+1}
$$

Take the inverse Laplace transform of $U(s)$ to get the desired solution.

$$
\begin{aligned}
u(x) & =\mathcal{L}^{-1}\{U(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\} \\
& =\cos x
\end{aligned}
$$

